Factors governing helix formation in peptides confined to carbon nanotubes.
نویسندگان
چکیده
The effect of confinement on the stability and dynamics of peptides and proteins is relevant in the context of a number of problems in biology and biotechnology. We have examined the stability of different helix-forming sequences upon confinement to a carbon nanotube using Langevin dynamics simulations of a coarse-grained representation of the polypeptide chain. We show that the interplay of several factors that include sequence, solvent conditions, strength (lambda) of nanotube-peptide interactions, and the nanotube diameter (D) determines confinement-induced stability of helicies. In agreement with predictions based on polymer theory, the helical state is entropically stabilized for all sequences when the interaction between the peptide and the nanotube is weakly hydrophobic and D is small. However, there is a strong sequence dependence as the strength of the lambda increases. For an amphiphilic sequence, the helical stability increases with lambda, whereas for polyalanine the diagram of states is a complex function of lambda and D. In addition, decreasing the size of the "hydrophobic patch" lining the nanotube, which mimics the chemical heterogeneity of the ribosome tunnel, increases the helical stability of the polyalanine sequence. Our results provide a framework for interpreting a number of experiments involving the structure formation of peptides in the ribosome tunnel as well as transport of biopolymers through nanotubes.
منابع مشابه
Physical adsorption of xenon in open single walled carbon nanotubes: Observation of a quasi-one-dimensional confined Xe phase
The adsorption of Xe into carbon single walled nanotubes with both closed and open ends has been investigated using temperature programmed desorption and other surface analytical tools. It has been found that opening the ends of the nanotube by chemical cutting increases both the kinetic rate and the saturation capacity of the nanotubes for Xe at 95 K. Further enhancement in Xe adsorption kinet...
متن کاملOxalate-assisted formation of uniform carbon-confined SnO2 nanotubes with enhanced lithium storage.
SnO2 nanotubes are synthesized via an oxalate-assisted "redox etching and precipitating" route between MnOOH nanowires and Sn2+ ions. The addition of oxalate is found to be crucial to guide the formation of uniform SnO2 nanotubes. To further improve the conductivity and stability, the as-obtained SnO2 nanotubes are coated with a thin carbon layer. The resulting carbon-confined SnO2 nanotubes po...
متن کاملMolecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-car...
متن کاملLongitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes
Torsional dynamic analysis of carbon nanotubes under the effect of longitudinal magnetic field is carried out in the present study. Torque effect of an axial magnetic field on a carbon nanotube has been defined using Maxwell’s relation. Nonlocal governing equation and boundary conditions for carbon nanotubes are obtained by using Hamilton’s minimum energy principle. Eringen’s nonlocal stress gr...
متن کاملSelf-assembly of carbon nanotube polyhedrons inside microchannels.
Well-defined carbon polyhedrons with faceted morphologies and hollow internal structures made of self-organized multi-walled carbon nanotubes have been fabricated by gas phase catalytic CVD inside microchannels, of which the confined space is critical for the formation of polyhedral structures with hexagonal, heptagonal and octagonal cross-sections that show superhydrophobic properties, with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2008